Biomarkers of woodsmoke exposure among wildland firefighters

Rick Neitzel, MS

University of Washington

Dept. of Environmental and Occupational Health Sciences

Woodsmoke exposure and health effects

- 70-80,000 workers involved in wildland firefighting annually (Harrison et al., 1995)
- Woodsmoke is complex mixture
 - Hundreds of chemicals (PAHs, aldehydes, etc.)
- Possible respiratory health effects (Naeher et al, 2005)
 - Asthma, infections, lung cancer, COPD
- 40% of firefighter medical problems during
 '88 Yellowstone fires respiratory (Naeher et al, 2005)

Woodsmoke exposure assessment

- Difficult among wildland firefighters
 - Highly transient
 - Area level ≠ personal exposure
 - Spatial/temporal variation
 - Irregular shifts, conditions
- Previous air measurements
 - Particulate matter (PM₁₀, PM_{3.5}) (Reinhardt and Ottmar, 2004)
 - Carbon monoxide (CO) (Reinhardt and Ottmar, 2004)
 - Levoglucosan (LG) (Simpson et al, 2004; Lee et al, 2005)
 - Methoxyphenols (MPs) (Dills et al, 2006; Dills et al, 2001)

Woodsmoke components: levoglucosan and methoxyphenols

- LG (measured in air)
 - Pyrolysis product of wood polymer cellulose
 - Most abundant organic compound in wildland woodsmoke particles (Lee et al, 2005)
 - Less likely to come from non-woodsmoke sources than PM, CO
- MPs (measured in air and urine)
 - Unique to woodsmoke; derived from lignin pyrolysis
 - Rapid urinary elimination; t1/2 ~ 2-6 hr

Background: 'campfire' study

- Nine healthy subjects (Dills et al, 2006)
 - 2 hr managed exposure to mixed hardwood and softwood smoke
 - Personal samples of PM_{2.5}, LG, MPs
 - 2 hr average PM_{2.5} conc ~1200 μg/m³
 - Serial urine samples over 72 hrs centered on
 - exposure
 - Dietary restrictions imposed

Excretion rates for syringol and guaiacol from 'campfire' study

Dose-response for MP biomarker from 'campfire' study

Biomarker is sum of 12-hr average creatinine adjusted urinary concentration for 5 methoxyphenols that showed maximum response to woodsmoke exposure

'Campfire' study conclusions

- Urinary concentrations of 5 syringols and guaiacols increased after acute (2 hr) exposure to woodsmoke.
- t_{1/2} for urinary excretion 2-6 hrs
- Biomarker levels increased proportionately with exposure to LG, PM_{2.5}
 - Exposure to LG explained ~80% of variability in urinary biomarker

Wildland firefighter pilot study

- Biomarkers may be more accurate measure of woodsmoke exposure than air samples
- Evaluate relationships between PM_{2.5}, CO, LG woodsmoke exposure and urinary MPs
- Hypothesis:
 - PM_{2.5}, CO, LG concentrations will be highly correlated with cross-shift urinary MP changes

Wildland firefighter study methods

- 20 shifts worked by 13 firefighters
 - Part of dataset collected by UGA, CDC
 - Chosen to cover range of PM_{2.5} exposures
- Personal TWA levels of CO, PM_{2.5}, LG + qxr
 - CO measured via datalogging monitor
 - PM_{2.5}, LG from single filter
 - Smoked/grilled foods, smoking
- Pre-/post-shift urine samples
 - 22 MPs + creatinine

Wildland firefighter study urinary MPs

- Pre-/post-shift MP levels normalized to creatinine levels before analysis (Dills et al, 2005)
 - Correct for temporal variations in urine conc.
- 14 of 22 creatinine-adjusted cross-shift MP changes significant
- 7 highly correlated creatinine-adjusted MPs chosen for MP vs. exposure analysis
 - 4 guaiacols, 3 syringols
 - These MPs analyzed separately and combined into summed guaiacol and syringol variables

Wildland firefighter study issues

- Urinary MPs and CO levels represent fullshift exposure
- PM/LG pumps often failed during shift
 - Failure times, later exposures in field notes
- Solution: data divided into subsets
 - Full-shift exposure measurements (n = 20 CO, 9 LG, 9 PM_{2.5} measures)
 - All exposure measurements (n = 20 CO, 15 LG, 15 PM_{2.5} measures)

Wildland firefighter study correlations: urinary MPs vs. exposures

- Creatinine-adjusted guaiacols
 - 4 individual and summed guaiacols significantly correlated with full-shift and all CO levels
 - 3 individual and summed guaiacols significantly correlated with all LG levels
 - No significant correlations with PM_{2.5} levels
- Creatinine-adjusted syringols
 - No significant correlations with full-shift or all CO, LG, or PM_{2.5} levels

Wildland firefighter study doseresponse for summed guaiacols

Other model r²: LG vs guaiacols, 0.03; CO+LG vs. guaiacols, 0.79

Wildland firefighter study conclusions

- Significant cross-shift changes in majority (14 of 22) of urinary MPs
- Creatinine-adjusted guaiacols highly associated with CO; smaller association with LG; none with PM_{2.5}
- Syringols not associated with CO, LG, PM
- CO explains most variance in MPs

Future directions and acknowledgements

- Examine exposure and urinary MP relationship in full UGA/CDC dataset
 - Stratify analysis by forest type, activity, etc

Thanks to:

- Christopher Simpson and Mike Paulsen, UW
- Luke Naeher, UGA
- Kevin Dunn, Alison Stock, Dana Barr, CDC
- Participating firefighters

Funded in part by:

Northwest Center for Particulate Air Pollution and Health (U.S. EPA grant #CR827355) and NIOSH (#R03-OH007656)